## Elementary Number Theory - Exam Practice Problems

1. Prove that the equation $x^{2}+2 y^{2}=8 z+5$ has no integer solutions.
2. Find all positive integers $x<300$ such that

$$
\begin{array}{ll}
x \equiv 3 & \bmod 4 \\
x \equiv 4 & \bmod 5 \\
x \equiv 2 & \bmod 7 .
\end{array}
$$

3. Find all incongruent solutions of the congruence $x^{3} \equiv 25 \bmod 64$.
4. Find all incongruent solutions of the congruence $x^{2}+3 x+18 \equiv 0 \bmod 28$.
5. Show that if $p$ is a prime with $p \equiv 1 \bmod 3$ then $x^{2}+x+1 \equiv 0 \bmod p$ has a solution.
6. A Carmichael number is an odd composite number $n$ which satisfies $a^{n-1} \equiv 1 \bmod n$ for every $a$ with $\operatorname{gcd}(a, n)=1$. Show that $561=3 \cdot 11 \cdot 17$ is a Carmichael number.
7. Show that if $p$ is a prime and $0<k<p$ then $(p-k)!(k-1)!\equiv(-1)^{k} \bmod p$.
8. Let $n>4$ be an integer. Show that $n \mid(n-1)$ ! if and only if $n$ is composite.
9. Let $f(n)$ be an arithmetic function such that $\Sigma_{d \mid n} f(d)=n^{2}+1$. Compute $f(12)$. Is $f$ multiplicative?
10. Recall that $\tau(n)$ denotes the number of positive divisors of $n$. Let $k \geq 2$ be a fixed integer. Show that the equation $\tau(n)=k$ has infinitely many solutions.
11. Given that 5 is a primitive root modulo 73 , find all positive integers less than 73 having order 12 modulo 73 .
12. Find all primitive roots $\alpha$ modulo $250=2 \cdot 5^{3}$ such that $\alpha \equiv 2,3 \bmod 5$.
13. Let $p$ be the prime $p=131=2 \cdot 5 \cdot 13+1$. Use the fact that 53 has order 5 modulo $p$ and that 39 has order 13 to find a primitive root modulo $p$.
14. Show that if $29 a^{2} \equiv b^{2} \bmod 19$ then $29 a^{2} \equiv b^{2} \bmod 19^{2}$.
15. Let $p$ be an odd prime. Show $\left(\frac{-3}{p}\right)=1 \Longleftrightarrow p \equiv 1 \bmod 3$.
16. Evaluate the Legendre symbol $\left(\frac{103}{229}\right)$.
17. If $n$ is odd, evaluate the Jacobi symbol $\left(\frac{n^{3}}{n-2}\right)$. Hint: The answer can be written in the form
18. If $\alpha$ and $\alpha^{\prime}$ are two irrational numbers with simple continued fraction expansions $\alpha=\left[3 ; 1,5,9, a_{1}, a_{2}, \ldots\right]$ and $\alpha^{\prime}=\left[3 ; 1,5,7, b_{1}, b_{2}, \ldots\right]$, prove that $\left|\alpha-\alpha^{\prime}\right|<\frac{49}{7095}=\frac{49}{3 \cdot 43 \cdot 55}$.
19. Find the real number with the periodic simple continued fraction expansion $[3 ; 4, \overline{1,2}]$.
20. Express $\sqrt{28}$ as a simple continued fraction, and find the solution $(x, y) \in \mathbb{Z}^{2}$ of the equation $x^{2}-28 y^{2}=1$ with the smallest positive $y$ value.
